

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-79669-1

Client Project/Site: Portland Harbor Pre-Remedial Design

For:

AECOM 1111 Third Ave Suite 1600 Seattle, Washington 98101

Attn: Amy Dahl

M. Elains Walker

Authorized for release by: 10/12/2018 12:36:53 PM

Elaine Walker, Project Manager II (253)248-4972

elaine.walker@testamericainc.com

·····LINKS ······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: AECOM

TestAmerica Job ID: 580-79669-1

Project/Site: Portland Harbor Pre-Remedial Design

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	7
Client Sample Results	8
QC Sample Results	14
Chronicle	25
Certification Summary	27
Sample Summary	28
Chain of Custody	29
Receint Checklists	32

2

4

6

8

9

Client: AECOM TestAmerica Job ID: 580-79669-1

Project/Site: Portland Harbor Pre-Remedial Design

Job ID: 580-79669-1

Laboratory: TestAmerica Seattle

Narrative

CASE NARRATIVE Client: AECOM

Project: Portland Harbor Pre-Remedial Design Report Number: 580-79669-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) resulting from a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are an unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes within the calibration range of the instrument or that reduces the interferences thereby enabling the quantification of target analytes.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

Three samples were received on 8/17/2018 3:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.7° C.

A sample container was provided to be archived frozen at the TestAmerica Sacramento laboratory pending potential additional analyses.

This report contains results of all analyses performed by TestAmerica Seattle.

The following sample was submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): PDI-SG-B437 (580-79669-1)

All samples were frozen to preserve the holding times. Samples were originally received and frozen at TestAmerica Sacramento on 8/22/18. Frozen samples were shipped to the Seattle laboratory on 9/10/18 and received/frozen in Seattle on 9/11/18.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2) and PDI-SG-B438 (580-79669-3) were analyzed for semivolatile organic compounds (GC-MS) in accordance with 8270D. The samples were prepared on 09/15/2018 and analyzed on 09/20/2018 and 09/24/2018.

Bis(2-ethylhexyl) phthalate was detected in method blank MB 580-284043/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and/or re-analysis of samples were not performed.

Bis(2-ethylhexyl) phthalate was detected in method blank MB 580-284057/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and/or re-analysis of samples were not performed.

Bis(2-ethylhexyl) phthalate failed the recovery criteria high for the MS of sample PDI-SG-B438MS (580-79669-3) in batch 580-284800.

4

4

5

6

Q Q

9

10

Client: AECOM TestAmerica Job ID: 580-79669-1

Project/Site: Portland Harbor Pre-Remedial Design

Job ID: 580-79669-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

Bis(2-ethylhexyl) phthalate failed the recovery criteria high for the MSD of sample PDI-SG-B438MSD (580-79669-3) in batch 580-284800. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Samples PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2), and PDI-SG-B438 (580-79669-3) were preserved by freezing within holding time. The samples were removed from the freezer on 9/12/2018.

The 8270D SIM reference spectra for Fluoranthene is incorrect in the raw data for samples PDI-SG-B437 (580-79669-1) and PDI-SG-B437-D (580-79669-2). However, this reference spectra is correct for sample PDI-SG-B438 (580-79669-3) and this reference spectra can be utilized for review of data for samples PDI-SG-B437 (580-79669-1) and PDI-SG-B437-D (580-79669-2).

The opening CCV for analytical batch 284395 was 3% above %D criteria for surrogate Terphenyl-d14. Since all samples and batch QC were well above 3% of the lower %R limit for this surrogate, the small bias has not caused any of the data to be artificially passing due to the instrument bias. Therefore the data is qualified and reported. The following samples are impacted: PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2), (CCVIS 580-284395/3), and (MB 580-284043/1-A).

The opening CCV for analytical batch 284567 was 1% above %D criteria for surrogate Terphenyl-d14. Since all samples and batch QC were well above 1% %R for this surrogate, the small bias has not caused any of the data to be artificially passing due to the instrument bias. Therefore the data is qualified and reported. (CCVIS 580-284567/3).

The following samples were diluted due to dark colored and viscous extracts, indicative of matrix interference: PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2), PDI-SG-B438 (580-79669-3), PDI-SG-B438 (580-79669-3[MS]) and PDI-SG-B438 (580-79669-3[MSD]). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SEMIVOLATILE ORGANIC COMPOUNDS - SELECTED ION MODE (SIM)

Samples PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2) and PDI-SG-B438 (580-79669-3) were analyzed for semivolatile organic compounds - Selected Ion Mode (SIM) in accordance with SW846 8270D_SIM. The samples were prepared on 09/15/2018 and analyzed on 09/19/2018.

Fluoranthene, Phenanthrene and Pyrene were detected in method blank MB 580-284059/1-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples were not performed.

The following samples were received frozen at the laboratory: PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2), and PDI-SG-B438 (580-79669-3). The samples were removed from freezer on 09/13/18.

The following samples were diluted due to the nature of the sample matrix: PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2), and PDI-SG-B438 (580-79669-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ORGANOTINS BY GC/MS

Samples PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2) and PDI-SG-B438 (580-79669-3) were analyzed for organotins by GC/MS in accordance with the Krone Method. The samples were prepared on 09/26/2018 and analyzed on 10/09/2018 and 10/10/2018.

The following samples were received frozen at the laboratory: PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2), PDI-SG-B438 (580-79669-3). The samples were removed from freezer on 09/13/18.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DIESEL AND EXTENDED RANGE ORGANICS

Samples PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2) and PDI-SG-B438 (580-79669-3) were analyzed for diesel and

3

5

7

8

9

10

Client: AECOM TestAmerica Job ID: 580-79669-1

Project/Site: Portland Harbor Pre-Remedial Design

Job ID: 580-79669-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

extended range organics in accordance with Method NWTPH-Dx. The samples were prepared on 09/15/2018 and analyzed on 09/18/2018 and 09/20/2018.

#2 Diesel (C10-C24) and Motor Oil (>C24-C36) exceeded the RPD limit for the MSD of sample PDI-SG-B438MSD (580-79669-3) in batch 580-284335. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

The %D of surrogate (o-Terphenyl) for CCV associated with batch 580-284139 was outside the upper control limits. All associated sample surrogate fell within acceptance criteria; therefore, the data have been reported. (CCV 580-284139/14), (CCV 580-284139/25) and (CCV 580-284139/30).

The following samples contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2), (580-79202-G-6-D) and (580-79202-G-6-E DU).

Continuing calibration verification (CCV) standard associated with batch 580-284335 recovered outside %Drift acceptance criteria for o-Terphenyl surrogate. The %Recovery is within acceptance criteria for the surrogate in the CCV and associated samples; therefore, the data are gualified and reported. The following samples are impacted: PDI-SG-B438 (580-79669-3), PDI-SG-B438 (580-79669-3[MS]), PDI-SG-B438 (580-79669-3[MSD]), (CCV 580-284335/14), (CCV 580-284335/25), (CCVRT 580-284335/3), (LCS 580-284058/2-A), (LCSD 580-284058/3-A), and (MB 580-284058/1-A).

The following samples were received frozen at the laboratory: PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2), and PDI-SG-B438 (580-79669-3). The samples were removed from the freezer in the evening on 09/14/2018.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICPMS)

Samples PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2) and PDI-SG-B438 (580-79669-3) were analyzed for Metals (ICPMS) in accordance with 6020A_LL. The samples were prepared and analyzed on 09/19/2018.

Copper failed the recovery criteria high for the MS of sample PDI-SG-B438MS (580-79669-3) in batch 580-284430. Copper failed the recovery criteria high for the MSD of sample PDI-SG-B438MSD (580-79669-3) in batch 580-284430. The associated LCS/LCSD recoveries met acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL MERCURY

Samples PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2) and PDI-SG-B438 (580-79669-3) were analyzed for total mercury in accordance with EPA SW-846 Method 7471A. The samples were prepared and analyzed on 09/12/2018.

Mercury failed the recovery criteria high for the MS of sample PDI-SG-B438MS (580-79669-3) in batch 580-283864. The MSD and associated LCS/LCSD recoveries met acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2) and PDI-SG-B438 (580-79669-3) were analyzed for total organic carbon in accordance with EPA SW-846 Method 9060. The samples were analyzed on 09/19/2018.

Total Organic Carbon - Duplicates was detected in method blank MB 580-284391/5 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and/or re-analysis of samples were not performed.

Samples PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2) and PDI-SG-B438 (580-79669-3) were frozen were preserved by

3

Client: AECOM TestAmerica Job ID: 580-79669-1

Project/Site: Portland Harbor Pre-Remedial Design

Job ID: 580-79669-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

freezing within holding time. Samples removed from freezer 09/14/2018.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS

Samples PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2) and PDI-SG-B438 (580-79669-3) were analyzed for percent solids in accordance with ASTM D2216. The samples were analyzed on 09/14/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL SOLIDS @ 70C

Samples PDI-SG-B437 (580-79669-1), PDI-SG-B437-D (580-79669-2) and PDI-SG-B438 (580-79669-3) were analyzed for Total Solids @ 70C. The samples were analyzed on 09/13/2018 and 09/21/2018.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

9

3

4

5

A

8

9

Definitions/Glossary

Client: AECOM TestAmerica Job ID: 580-79669-1

Project/Site: Portland Harbor Pre-Remedial Design

Qualifier Description

MS and/or MSD Recovery is outside acceptance limits.

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
F1	MS and/or MSD Recovery is outside acceptance limits.

GC Semi VOA

Qualifier

F1

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F2	MS/MSD RPD exceeds control limits
F4	MS/MSD RPD exceeds control limits due to sample size difference.
Metals	
Qualifier	Qualifier Description

General Chemistry

	······································
Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

These commonly used abbreviations may or may not be present in this report.

Glossary

Abbreviation

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Seattle

Page 7 of 32 10/12/2018

Project/Site: Portland Harbor Pre-Remedial Design

Client Sample ID: PDI-SG-B437

Client: AECOM

Lab Sample ID: 580-79669-1 Date Collected: 08/16/18 12:45 **Matrix: Solid** Date Received: 08/17/18 15:30 Percent Solids: 54.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylnaphthalene	ND		45	4.0	ug/Kg	₩	09/15/18 08:40	09/19/18 00:41	2
Acenaphthene	ND		45	5.4	ug/Kg	≎	09/15/18 08:40	09/19/18 00:41	2
Acenaphthylene	ND		45	4.5	ug/Kg	₩	09/15/18 08:40	09/19/18 00:41	2
Anthracene	8.5	J	45	5.4	ug/Kg	≎	09/15/18 08:40	09/19/18 00:41	2
Benzo[a]anthracene	24	J	45	6.8	ug/Kg	≎	09/15/18 08:40	09/19/18 00:41	2
Benzo[a]pyrene	33	J	45	3.6	ug/Kg	≎	09/15/18 08:40	09/19/18 00:41	2
Benzo[b]fluoranthene	46		45	5.3	ug/Kg	.	09/15/18 08:40	09/19/18 00:41	2
Benzo[g,h,i]perylene	37	J	45	4.5	ug/Kg	☼	09/15/18 08:40	09/19/18 00:41	2
Benzo[k]fluoranthene	16	J	45	5.4	ug/Kg	≎	09/15/18 08:40	09/19/18 00:41	2
Chrysene	39	J	45	13	ug/Kg	₽	09/15/18 08:40	09/19/18 00:41	
Dibenz(a,h)anthracene	ND		45	6.5	ug/Kg	☼	09/15/18 08:40	09/19/18 00:41	2
Fluoranthene	50		45	13	ug/Kg	₩	09/15/18 08:40	09/19/18 00:41	2
Fluorene	ND		45	4.5	ug/Kg		09/15/18 08:40	09/19/18 00:41	2
Indeno[1,2,3-cd]pyrene	40	J	45		ug/Kg	≎	09/15/18 08:40	09/19/18 00:41	2
Naphthalene	20		45	7.2	ug/Kg	₩	09/15/18 08:40	09/19/18 00:41	:
Phenanthrene	38	J	45	6.2	ug/Kg		09/15/18 08:40	09/19/18 00:41	
Pyrene	57		45	8.7	ug/Kg	☼	09/15/18 08:40	09/19/18 00:41	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Terphenyl-d14	76		57 - 120				09/15/18 08:40	09/19/18 00:41	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Terphenyl-d14 (Surr)	109		58 - 120				09/15/18 08:47	09/20/18 01:11	
Mothod: Organotina Orga	notine DSED	(CC/MC)							
Method: Organotins - Orga ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Tributyltin	— ND	- Guainiei	130		ug/Kg	— =	09/26/18 09:35	10/09/18 22:17	
· · · · · · · · · · · · · · · · · · ·	110		100	00	ug/11g		00/20/10 00:00	10/00/10 22:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Tripentyltin			10 - 113				09/26/18 09:35	10/09/18 22:17	
Method: NWTPH-Dx - North	nwest - Semi-V	olatilo Pot	roleum Prod	ucts (G(2)				
Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil F
#2 Diesel (C10-C24)			87		mg/Kg	<u></u>		09/18/18 00:49	
Motor Oil (>C24-C36)	280		87		mg/Kg	☼	09/15/18 08:55		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
o-Terphenyl	101		50 - 150				09/15/18 08:55	09/18/18 00:49	
Method: 6020B - Metals (IC	P/MS)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic	4.1		0.39	0.077	mg/Kg	<u> </u>	09/19/18 09:20	09/19/18 22:13	
Cadmium	0.14	J	0.31	0.059	mg/Kg	☼	09/19/18 09:20	09/19/18 22:13	
				0.47		**	00/40/40 00:00	00/40/40 00:40	
Copper	33		0.77	0.17	mg/Kg	æ	09/19/18 09:20	09/19/18 22:13	
Copper Lead	33 10		0.77 0.39		mg/Kg mg/Kg			09/19/18 22:13	

Client Sample Results

Client: AECOM TestAmerica Job ID: 580-79669-1

Project/Site: Portland Harbor Pre-Remedial Design

Client Sample ID: PDI-SG-B437 Lab Sample ID: 580-79669-1

Date Collected: 08/16/18 12:45 Matrix: Solid

Date Received: 08/17/18 15:30 Percent Solids: 54.3

Analyte	N) Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.075		0.046	0.014	mg/Kg	<u> </u>	09/12/18 12:34	09/12/18 15:22	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	22000	В	2000	44	mg/Kg			09/19/18 14:16	1
					0/			00/44/40 40:40	
Total Solids	54.3		0.1	0.1	%			09/14/18 12:42	1

_

Δ

5

7

R

9

1 N

Project/Site: Portland Harbor Pre-Remedial Design

Client Sample ID: PDI-SG-B437-D

Client: AECOM

Lab Sample ID: 580-79669-2

Date Collected: 08/16/18 12:45 **Matrix: Solid** Date Received: 08/17/18 15:30 Percent Solids: 51.8

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil
2-Methylnaphthalene	ND		45		ug/Kg	**		09/19/18 01:07	
Acenaphthene	ND		45		ug/Kg	₩	09/15/18 08:40	09/19/18 01:07	
Acenaphthylene	ND		45		ug/Kg	₩	09/15/18 08:40	09/19/18 01:07	
Anthracene	6.1	J	45	5.4	ug/Kg	₩		09/19/18 01:07	
Benzo[a]anthracene	11	J	45	6.9	ug/Kg	₩	09/15/18 08:40	09/19/18 01:07	
Benzo[a]pyrene	14	J	45	3.6	ug/Kg	₩	09/15/18 08:40	09/19/18 01:07	
Benzo[b]fluoranthene	16	J	45	5.3	ug/Kg		09/15/18 08:40	09/19/18 01:07	
Benzo[g,h,i]perylene	12	J	45	4.5	ug/Kg	₩	09/15/18 08:40	09/19/18 01:07	
Benzo[k]fluoranthene	8.6	J	45	5.4	ug/Kg	₩	09/15/18 08:40	09/19/18 01:07	
hrysene	18	J	45	14	ug/Kg	₩.	09/15/18 08:40	09/19/18 01:07	
ibenz(a,h)anthracene	ND		45	6.5	ug/Kg	☼	09/15/18 08:40	09/19/18 01:07	
luoranthene	35	J	45	13	ug/Kg	₩	09/15/18 08:40	09/19/18 01:07	
luorene	ND		45		ug/Kg	₩	09/15/18 08:40	09/19/18 01:07	
ndeno[1,2,3-cd]pyrene	14	J	45		ug/Kg	☼	09/15/18 08:40	09/19/18 01:07	
aphthalene	15		45		ug/Kg	₩		09/19/18 01:07	
henanthrene	26		45		ug/Kg			09/19/18 01:07	
yrene	32		45		ug/Kg	₽	09/15/18 08:40	09/19/18 01:07	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
erphenyl-d14	76		57 - 120				09/15/18 08:40	09/19/18 01:07	
is(2-ethylhexyl) phthalate	150		1100	130	ug/Kg	— ಫ	09/15/18 08:47		Dil
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
erphenyl-d14 (Surr)	90		58 - 120				09/15/18 08:47	09/20/18 01:35	
lethod: Organotins - Orga									
nalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil
ibutyltin	ND		140	36	ug/Kg	ಫ	09/26/18 09:35	10/10/18 01:16	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
ripentyltin	15		10 - 113				09/26/18 09:35	10/10/18 01:16	
lethod: NWTPH-Dx - North				•	•				
nalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil
2 Diesel (C10-C24)	61	J	96		mg/Kg	:		09/18/18 01:10	
otor Oil (>C24-C36)	300		96	34	mg/Kg	₽	09/15/18 08:55	09/18/18 01:10	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
Terphenyl	97		50 - 150				09/15/18 08:55	09/18/18 01:10	
lethod: 6020B - Metals (IC									
nalyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil
rsenic	4.4		0.46	0.093	mg/Kg	\	09/19/18 09:20	09/19/18 22:17	
admium	0.17	J	0.37		mg/Kg	₩	09/19/18 09:20	09/19/18 22:17	
			0.03	0.20	mg/Kg	≎	00/10/19 00:20	09/19/18 22:17	
opper	35		0.93	0.20	mg/rtg	~	09/19/16 09.20	09/19/10 22.17	
Copper Lead	35 11		0.93		mg/Kg			09/19/18 22:17	

Client Sample Results

Client: AECOM TestAmerica Job ID: 580-79669-1

Project/Site: Portland Harbor Pre-Remedial Design

Client Sample ID: PDI-SG-B437-D Lab Sample ID: 580-79669-2

Date Collected: 08/16/18 12:45 Matrix: Solid

Date Received: 08/17/18 15:30 Percent Solids: 51.8

Analyte	N) Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.075		0.041	0.012	mg/Kg	\	09/12/18 12:34	09/12/18 15:25	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	22000	В	2000	44	mg/Kg			09/19/18 14:21	1
Total Solids	51.8		0.1	0.1	%			09/14/18 12:42	1

Project/Site: Portland Harbor Pre-Remedial Design

Client Sample ID: PDI-SG-B438

Client: AECOM

Lab Sample ID: 580-79669-3 Date Collected: 08/16/18 14:34 **Matrix: Solid** Date Received: 08/17/18 15:30 Percent Solids: 56.4

Method: 8270D SIM - Sem Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylnaphthalene	16		17		ug/Kg	— -	09/15/18 16:23		
Acenaphthene	6.8		17	2.0	ug/Kg	₩		09/19/18 14:31	1
Acenaphthylene	12		17		ug/Kg	₩	09/15/18 16:23	09/19/18 14:31	
Anthracene	11		17		ug/Kg		09/15/18 16:23	09/19/18 14:31	
Benzo[a]anthracene	26		17		ug/Kg	₩	09/15/18 16:23	09/19/18 14:31	1
Benzo[a]pyrene	26		17		ug/Kg	₩	09/15/18 16:23		
Benzo[b]fluoranthene	37		17	2.0				09/19/18 14:31	
Benzo[g,h,i]perylene	21		17	1.7	ug/Kg	₩		09/19/18 14:31	
Benzo[k]fluoranthene	11	1	17		ug/Kg	₩		09/19/18 14:31	
Chrysene	41		17		ug/Kg			09/19/18 14:31	;
Dibenz(a,h)anthracene	6.1	1	17		ug/Kg	₩		09/19/18 14:31	
Fluoranthene	74		17		ug/Kg ug/Kg	- T		09/19/18 14:31	
Fluorene			17		ug/Kg			09/19/18 14:31	:
	22	3	17		ug/Kg ug/Kg			09/19/18 14:31	
Indeno[1,2,3-cd]pyrene			17		0 0	**		09/19/18 14:31	
Naphthalene	39				ug/Kg	_{**} .		09/19/18 14:31	;
Phenanthrene	50		17		ug/Kg	*			
Pyrene	70	В	17	3.2	ug/Kg	*	09/15/16 10.23	09/19/18 14:31	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Terphenyl-d14	95		57 - 120				•	09/19/18 14:31	
, ,									
Method: 8270D - Semivola	atile Organic Co	mpounds	(GC/MS)						
Analyte	_	Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bis(2-ethylhexyl) phthalate	ND	F1	500	59	ug/Kg	<u>₩</u>	09/15/18 14:52	09/24/18 21:58	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Terphenyl-d14 (Surr)	95		58 - 120				09/15/18 14:52	09/24/18 21:58	•
Method: Organotins - Org			ъ.	MDI	1114	_	D	A l	D'' E
Analyte		Qualifier	RL	MDL		— D	Prepared	Analyzed	Dil Fa
Tributyltin	ND		130	33	ug/Kg	¥	09/26/18 09:35	10/09/18 22:43	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Tripentyltin		Qualifier	10 - 113				•	10/09/18 22:43	
Triperityian	11		10-115				03/20/10 03:33	10/03/10 22.43	
Method: NWTPH-Dx - Nor	thwest - Semi-V	olatile Pet	roleum Prod	ucts (G	2)				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)		J F2			mg/Kg	— Ţ		09/20/18 00:52	
Motor Oil (>C24-C36)	310		80		mg/Kg	₩	09/15/18 16:58		
,		-			0 0				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
o-Terphenyl	97		50 - 150				09/15/18 16:58	09/20/18 00:52	
Method: 6020B - Metals (I	CP/MS)								
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil F
Arsenic	4.4		0.38	0.077	mg/Kg	\	09/19/18 09:20	09/19/18 21:42	
Cadmium	0.15	J	0.31		mg/Kg	₩		09/19/18 21:42	
Copper	31	F1	0.77	0.17	mg/Kg	₩	09/19/18 09:20	09/19/18 21:42	
Coppei	• • • • • • • • • • • • • • • • • • • •								
Lead	14		0.38	0.037	mg/Kg	₩.	09/19/18 09:20	09/19/18 21:42	

Client Sample Results

Client: AECOM TestAmerica Job ID: 580-79669-1

Project/Site: Portland Harbor Pre-Remedial Design

Total Solids @ 70°C

Client Sample ID: PDI-SG-B438

Lab Sample ID: 580-79669-3 Date Collected: 08/16/18 14:34

57 H

Matrix: Solid Date Received: 08/17/18 15:30 Percent Solids: 56.4

0.10 %

Method: 7471A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ₩ 0.046 0.014 mg/Kg 09/12/18 12:34 09/12/18 15:08 Mercury 0.10 F1

General Chemistry Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 2000 44 mg/Kg 09/19/18 12:39 **Total Organic Carbon - Duplicates** 18000 B **Total Solids** 56.4 0.1 0.1 % 09/14/18 12:42

0.10

09/13/18 04:11

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 284057

Project/Site: Portland Harbor Pre-Remedial Design

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-284043/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Prep Batch: 284043

Analysis Batch: 284395 MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte 30 09/15/18 08:47 09/19/18 17:23 Bis(2-ethylhexyl) phthalate 3.89 J 3.6 ug/Kg

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Terphenyl-d14 (Surr) 107 58 - 120 09/15/18 08:47 09/19/18 17:23

Lab Sample ID: LCS 580-284043/2-A

Matrix: Solid

Analysis Batch: 284567

Prep Batch: 284043 LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 50.0 93 Bis(2-ethylhexyl) phthalate ug/Kg 59 - 123 46.4

LCS LCS

Surrogate %Recovery Qualifier Limits Terphenyl-d14 (Surr) 58 - 120

Lab Sample ID: MB 580-284057/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Solid

Client: AECOM

Analysis Batch: 284800

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed 30 Bis(2-ethylhexyl) phthalate 8.73 J 3.6 ug/Kg 09/15/18 14:52 09/24/18 18:17

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Terphenyl-d14 (Surr) 97 58 - 120 09/15/18 14:52 09/24/18 18:17

Lab Sample ID: LCS 580-284057/2-A

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 284800** Prep Batch: 284057 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Bis(2-ethylhexyl) phthalate 50.0 59.7 ug/Kg 119 59 - 123

LCS LCS

%Recovery Qualifier Surrogate Limits Terphenyl-d14 (Surr) 58 - 120 116

Lab Sample ID: 580-79669-3 MS Client Sample ID: PDI-SG-B438

Matrix: Solid

Prep Type: Total/NA Prep Batch: 284057 **Analysis Batch: 284800** Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec Bis(2-ethylhexyl) phthalate ND F1 81.8 ₹ 161 59 - 123 132 J F1 ug/Kg

MS MS

%Recovery Qualifier Limits Surrogate Terphenyl-d14 (Surr) 98 58 - 120

TestAmerica Seattle

10/12/2018

Project/Site: Portland Harbor Pre-Remedial Design

Client: AECOM

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 580-79669-3 MSD Client Sample ID: PDI-SG-B438 **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 284800** Prep Batch: 284057 Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte 68.2 ND F1 132 JF1 ug/Kg 194 59 - 123 Bis(2-ethylhexyl) phthalate

MSD MSD %Recovery Surrogate Qualifier Limits Terphenyl-d14 (Surr) 93 58 - 120

Lab Sample ID: MB 580-284042/1-A

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

MB MB

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 284269** Prep Batch: 284042 MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte 1.0 2-Methylnaphthalene $\overline{\mathsf{ND}}$ 0.090 ug/Kg 09/15/18 08:40 09/18/18 16:04 ND Acenaphthene 1.0 0.12 ug/Kg 09/15/18 08:40 09/18/18 16:04 Acenaphthylene ND 1.0 0.10 ug/Kg 09/15/18 08:40 09/18/18 16:04 Anthracene ND 09/15/18 08:40 09/18/18 16:04 1.0 0.12 ug/Kg ND Benzo[a]anthracene 1.0 09/15/18 08:40 09/18/18 16:04 0.15 ug/Kg Benzo[a]pyrene ND 1.0 0.080 ug/Kg 09/15/18 08:40 09/18/18 16:04 Benzo[b]fluoranthene ND 1.0 0.12 ug/Kg 09/15/18 08:40 09/18/18 16:04 Benzo[g,h,i]perylene ND 1.0 0.10 ug/Kg 09/15/18 08:40 09/18/18 16:04 ND 09/15/18 08:40 09/18/18 16:04 Benzo[k]fluoranthene 1.0 0.12 ug/Kg Chrysene ND 1.0 0.30 ug/Kg 09/15/18 08:40 09/18/18 16:04 Dibenz(a,h)anthracene ND 1.0 09/15/18 08:40 09/18/18 16:04 0.14 ug/Kg ND Fluoranthene 1.0 0.28 ug/Kg 09/15/18 08:40 09/18/18 16:04 Fluorene ND 1.0 0.10 ug/Kg 09/15/18 08:40 09/18/18 16:04 ND Indeno[1,2,3-cd]pyrene 1.0 0.12 ug/Kg 09/15/18 08:40 09/18/18 16:04 Naphthalene ND 1.0 0.16 ug/Kg 09/15/18 08:40 09/18/18 16:04 Phenanthrene ND 1.0 0.14 ug/Kg 09/15/18 08:40 09/18/18 16:04 Pyrene ND 1.0 0.19 ug/Kg 09/15/18 08:40 09/18/18 16:04

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Terphenyl-d14 88 57 - 120 09/15/18 08:40 09/18/18 16:04

Lab Sample ID: LCS 580-284042/2-A **Matrix: Solid**

Analysis Batch: 284269	Spike	LCS	LCS				Prep Batch: 284042 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Methylnaphthalene	200	178		ug/Kg		89	68 - 120
Acenaphthene	200	178		ug/Kg		89	68 - 120
Acenaphthylene	200	187		ug/Kg		94	68 - 120
Anthracene	200	183		ug/Kg		92	73 - 125
Benzo[a]anthracene	200	189		ug/Kg		95	66 - 120
Benzo[a]pyrene	200	174		ug/Kg		87	72 - 124
Benzo[b]fluoranthene	200	192		ug/Kg		96	63 - 121
Benzo[g,h,i]perylene	200	199		ug/Kg		100	63 - 120
Benzo[k]fluoranthene	200	200		ug/Kg		100	63 - 123

TestAmerica Seattle

Page 15 of 32 10/12/2018

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Project/Site: Portland Harbor Pre-Remedial Design

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 580-284042/2-A

Matrix: Solid

Client: AECOM

Analysis Batch: 284269

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 284042

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chrysene	200	176		ug/Kg		88	69 - 120	
Dibenz(a,h)anthracene	200	194		ug/Kg		97	70 - 125	
Fluoranthene	200	185		ug/Kg		92	74 - 125	
Fluorene	200	181		ug/Kg		91	73 - 120	
Indeno[1,2,3-cd]pyrene	200	183		ug/Kg		92	65 - 121	
Naphthalene	200	158		ug/Kg		79	70 - 120	
Phenanthrene	200	177		ug/Kg		88	73 - 120	
Pyrene	200	182		ug/Kg		91	70 - 120	
The state of the s								

LCS LCS

Lab Sample ID: MB 580-284059/1-A

Matrix: Solid

Analysis Batch: 284623

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 284059

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		1.0	0.090	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Acenaphthene	ND		1.0	0.12	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Acenaphthylene	ND		1.0	0.10	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Anthracene	ND		1.0	0.12	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Benzo[a]anthracene	ND		1.0	0.15	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Benzo[a]pyrene	ND		1.0	0.080	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Benzo[b]fluoranthene	ND		1.0	0.12	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Benzo[g,h,i]perylene	ND		1.0	0.10	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Benzo[k]fluoranthene	ND		1.0	0.12	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Chrysene	ND		1.0	0.30	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Dibenz(a,h)anthracene	ND		1.0	0.14	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Fluoranthene	0.373	J	1.0	0.28	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Fluorene	ND		1.0	0.10	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Indeno[1,2,3-cd]pyrene	ND		1.0	0.12	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Naphthalene	ND		1.0	0.16	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Phenanthrene	0.734	J	1.0	0.14	ug/Kg		09/15/18 16:23	09/21/18 17:08	1
Pyrene	0.314	J	1.0	0.19	ug/Kg		09/15/18 16:23	09/21/18 17:08	1

MB MB

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 Terphenyl-d14
 91
 57 - 120
 09/15/18 16:23
 09/21/18 17:08
 1

Lab Sample ID: LCS 580-284059/2-A

Matrix: Solid

Analysis Batch: 284415

Client Sample II	D: Lab Control Sample
	Prep Type: Total/NA
	Prop Ratch: 284059

Spike LCS LCS %Rec. Added Unit Analyte Result Qualifier %Rec Limits 2-Methylnaphthalene 200 183 ug/Kg 92 68 - 120 Acenaphthene 200 191 ug/Kg 95 68 - 120 200 Acenaphthylene 203 101 ug/Kg 68 - 120 Anthracene 200 180 90 73 - 125 ug/Kg Benzo[a]anthracene 200 66 - 120 183 ug/Kg 91

TestAmerica Seattle

Page 16 of 32

9

3

4

6

8

10

1

10/12/2018

Project/Site: Portland Harbor Pre-Remedial Design

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 580-284059/2-A

Matrix: Solid

Client: AECOM

Analysis Batch: 284415

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 284059

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[a]pyrene	200	201		ug/Kg		100	72 - 124	
Benzo[b]fluoranthene	200	205		ug/Kg		103	63 - 121	
Benzo[g,h,i]perylene	200	206		ug/Kg		103	63 - 120	
Benzo[k]fluoranthene	200	212		ug/Kg		106	63 - 123	
Chrysene	200	210		ug/Kg		105	69 - 120	
Dibenz(a,h)anthracene	200	232		ug/Kg		116	70 - 125	
Fluoranthene	200	200		ug/Kg		100	74 ₋ 125	
Fluorene	200	189		ug/Kg		95	73 - 120	
Indeno[1,2,3-cd]pyrene	200	239		ug/Kg		120	65 - 121	
Naphthalene	200	177		ug/Kg		89	70 - 120	
Phenanthrene	200	189		ug/Kg		94	73 - 120	
Pyrene	200	198		ug/Kg		99	70 - 120	

LCS LCS

Surrogate %Recovery Qualifier Limits Terphenyl-d14 107 57 - 120

Lab Sample ID: 580-79669-3 MS

Matrix: Solid

Analysis Batch: 284415

Client Sample ID: PDI-SG-B438 **Prep Type: Total/NA**

Prep Batch: 284059

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Methylnaphthalene	16	J	304	296		ug/Kg	₩	92	68 - 120
Acenaphthene	6.8	J	304	367		ug/Kg	☆	118	68 - 120
Acenaphthylene	12	J	304	334		ug/Kg	₩	106	68 - 120
Anthracene	11	J	304	320		ug/Kg	₩	101	73 - 125
Benzo[a]anthracene	26		304	336		ug/Kg	☆	102	66 - 120
Benzo[a]pyrene	26		304	326		ug/Kg	☆	99	72 ₋ 124
Benzo[b]fluoranthene	37		304	321		ug/Kg	₩	93	63 - 121
Benzo[g,h,i]perylene	21		304	295		ug/Kg	☆	90	63 - 120
Benzo[k]fluoranthene	11	J	304	326		ug/Kg	≎	104	63 - 123
Chrysene	41		304	352		ug/Kg	\$	102	69 - 120
Dibenz(a,h)anthracene	6.1	J	304	298		ug/Kg	☆	96	70 ₋ 125
Fluoranthene	74	В	304	443		ug/Kg	≎	122	74 - 125
Fluorene	11	J	304	339		ug/Kg	₩.	108	73 - 120
Indeno[1,2,3-cd]pyrene	22		304	355		ug/Kg	≎	110	65 ₋ 121
Naphthalene	39		304	288		ug/Kg	≎	82	70 - 120
Phenanthrene	50	В	304	399		ug/Kg	₽	115	73 - 120
Pyrene	70	В	304	434		ug/Kg	≎	120	70 - 120

MS MS

Surrogate %Recovery Qualifier Limits Terphenyl-d14 105 57 - 120

Lab Sample ID: 580-79669-3 MSD

Matrix: Solid

Analysis Batch: 284415										•	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Methylnaphthalene	16	J	333	312		ug/Kg	\	89	68 - 120	5	12
	Analyte	Analysis Batch: 284415 Sample Analyte Result	Analysis Batch: 284415 Sample Sample Analyte Result Qualifier	Analysis Batch: 284415 Sample Sample Spike Analyte Result Qualifier Added	Analysis Batch: 284415 Sample Sample Spike MSD Analyte Result Qualifier Added Result	Analysis Batch: 284415 Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier	Analysis Batch: 284415 Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit	Analysis Batch: 284415 Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D	Analysis Batch: 284415 Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec	Analysis Batch: 284415 Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Analysis Batch: 284415 Sample Sample Spike MSD MSD Prep Batch: 28 Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD

TestAmerica Seattle

Client Sample ID: PDI-SG-B438

Page 17 of 32

10/12/2018

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 580-79669-3 MSD **Matrix: Solid**

Client: AECOM

Client Sample ID: PDI-SG-B438
Prep Type: Total/NA

Analysis Batch: 284415									Prep Batch: 2		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	6.8	J	333	334		ug/Kg	<u> </u>	98	68 - 120	10	12
Acenaphthylene	12	J	333	346		ug/Kg	₩	100	68 - 120	3	12
Anthracene	11	J	333	325		ug/Kg	₩	94	73 - 125	2	12
Benzo[a]anthracene	26		333	329		ug/Kg	₩	91	66 - 120	2	14
Benzo[a]pyrene	26		333	344		ug/Kg	₩	95	72 - 124	5	12
Benzo[b]fluoranthene	37		333	334		ug/Kg	₩	89	63 - 121	4	10
Benzo[g,h,i]perylene	21		333	312		ug/Kg	☆	87	63 - 120	6	14
Benzo[k]fluoranthene	11	J	333	321		ug/Kg	₩	93	63 - 123	1	15
Chrysene	41		333	379		ug/Kg	₩	102	69 - 120	7	10
Dibenz(a,h)anthracene	6.1	J	333	322		ug/Kg	₩	95	70 - 125	8	13
Fluoranthene	74	В	333	402		ug/Kg	☆	99	74 - 125	10	13
Fluorene	11	J	333	331		ug/Kg	₩	96	73 - 120	2	13
Indeno[1,2,3-cd]pyrene	22		333	389		ug/Kg	☆	110	65 - 121	9	15
Naphthalene	39		333	302		ug/Kg	☆	79	70 - 120	5	12
Phenanthrene	50	В	333	372		ug/Kg	₩	97	73 - 120	7	11
Pyrene	70	В	333	415		ug/Kg	≎	103	70 - 120	5	12
=											

MSD MSD

Surrogate %Recovery Qualifier Limits Terphenyl-d14 102 57 - 120

Method: Organotins - Organotins, PSEP (GC/MS)

Lab Sample ID: MB 580-284918/1-A

Lab Sample ID: LCS 580-284918/2-A

Matrix: Solid

Matrix: Solid

Tributyltin

Analyte

Tributyltin

Analysis Batch: 285981

MB MB

 $\overline{\mathsf{ND}}$

Result Qualifier

MDL Unit 20 ug/Kg

ug/Kg

Prepared Analyzed 09/26/18 09:35 10/09/18 16:44

Client Sample ID: Method Blank

Prep Batch: 284918 Dil Fac

Prep Type: Total/NA

MB MB

Surrogate %Recovery Qualifier Tripentyltin 54

Limits 10 - 113

RL

75

95.2

Prepared Analyzed Dil Fac 09/26/18 09:35 10/09/18 16:44

Client Sample ID: Lab Control Sample Prep Type: Total/NA

14 - 150

53

Prep Batch: 284918

Analysis Batch: 285981 LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits

178

LCS LCS

Surrogate %Recovery Qualifier Limits Tripentyltin 52 10 - 113

Client: AECOM Project/Site: Portland Harbor Pre-Remedial Design TestAmerica Job ID: 580-79669-1

Method: Organotins - Organotins, PSEP (GC/MS) (Continued)

Lab Sample ID: 580-79669-3 MS

Lab Sample ID: 580-79669-3 MSD

Matrix: Solid

Matrix: Solid

Analysis Batch: 285981

Analysis Batch: 285981

Client Sample ID: PDI-SG-B438

Prep Type: Total/NA

Prep Batch: 284918 %Rec.

Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 307 14 Tributyltin ND 42.8 J ug/Kg 14 - 150

Spike

MS MS

MS MS

Surrogate %Recovery Qualifier Limits Tripentyltin 10 - 113 14

Client Sample ID: PDI-SG-B438

Prep Type: Total/NA

Prep Batch: 284918

RPD %Rec.

MSD MSD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 303 15 14 - 150 20 Tributyltin ND 46.3 J ug/Kg

MSD MSD

Surrogate %Recovery Qualifier Limits Tripentyltin 10 - 113 16

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

MR MR

MB MB

Lab Sample ID: MB 580-284044/1-A

Matrix: Solid

Analysis Batch: 284139

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 284044

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND	50	12	mg/Kg		09/15/18 08:55	09/17/18 16:24	1
Motor Oil (>C24-C36)	ND	50	18	mg/Kg		09/15/18 08:55	09/17/18 16:24	1

Qualifier Surrogate %Recovery Limits o-Terphenyl 94 50 - 150

Prepared Analyzed Dil Fac 09/15/18 08:55 09/17/18 16:24

Lab Sample ID: LCS 580-284044/2-A

Lab Sample ID: LCSD 580-284044/3-A

Matrix: Solid

Analysis Batch: 284139

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 284044

Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits 500 #2 Diesel (C10-C24) 555 mg/Kg 70 - 125 111 Motor Oil (>C24-C36) 500 545 109 mg/Kg

LCS LCS

%Recovery Qualifier Limits Surrogate o-Terphenyl 122 50 - 150

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 284139 Prep Batch: 284044 Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits RPD Unit %Rec Analyte 500 #2 Diesel (C10-C24) 598 mg/Kg 120 70 - 125 8 Motor Oil (>C24-C36) 500 585 117 70 - 129 16 mg/Kg

Project/Site: Portland Harbor Pre-Remedial Design

TestAmerica Job ID: 580-79669-1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCSD 580-284044/3-A

Matrix: Solid

Analyte

Client: AECOM

Analysis Batch: 284139

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 284044

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150 121

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 284058

Lab Sample ID: MB 580-284058/1-A **Matrix: Solid**

Analysis Batch: 284335

#2 Diesel (C10-C24)

Motor Oil (>C24-C36)

MB MB Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed $\overline{\mathsf{ND}}$ 50 12 mg/Kg 09/15/18 15:32 09/19/18 22:17 ND 50 18 mg/Kg 09/15/18 15:32 09/19/18 22:17

MB MB

Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac o-Terphenyl 93 50 - 150 09/15/18 15:32 09/19/18 22:17

> **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Lab Sample ID: LCS 580-284058/2-A **Matrix: Solid**

Analysis Batch: 284335 Prep Batch: 284058 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits #2 Diesel (C10-C24) 500 499 100 70 - 125 mg/Kg Motor Oil (>C24-C36) 500 504 mg/Kg 101 70 - 129

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 113 50 - 150

Lab Sample ID: LCSD 580-284058/3-A

Matrix: Solid

Analysis Batch: 284335

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 284058

LCSD LCSD RPD Spike %Rec. **Analyte** Added Result Qualifier Unit D %Rec Limits RPD Limit #2 Diesel (C10-C24) 500 515 mg/Kg 103 70 - 125 3 16 500 Motor Oil (>C24-C36) 515 mg/Kg 103 70 - 129 2 16

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 119 50 - 150

Lab Sample ID: 580-79669-3 MS

Matrix: Solid

Analysis Batch: 284335

Client Sample ID: PDI-SG-B438 Prep Type: Total/NA

Prep Batch: 284058

%Rec.

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ₩ 73 J F2 851 #2 Diesel (C10-C24) mg/Kg 99 70 - 125 915 Motor Oil (>C24-C36) 851 ť 310 F2 1230 mg/Kg 108 70 - 129

MS MS

%Recovery Qualifier Limits Surrogate 50 - 150 o-Terphenyl 108

Client Sample ID: PDI-SG-B438

Project/Site: Portland Harbor Pre-Remedial Design

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: 580-79669-3 MSD

Matrix: Solid

#2 Diesel (C10-C24) Motor Oil (>C24-C36)

Analyte

Client: AECOM

Analysis Batch: 284

4335									Prep Typ Prep Ba		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	73	J F2	719	732	F4	mg/Kg	-	92	70 - 125	22	16
	310	F2	719	979	F4	mg/Kg	₩	93	70 - 129	23	16

MSD MSD

%Recovery Qualifier Surrogate Limits o-Terphenyl 91 50 - 150

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 580-284311/10-A

Matrix: Solid

Analysis Batch: 284430

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 284311

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Arsenic ND 0.25 0.050 mg/Kg 09/19/18 09:20 09/19/18 21:27 Cadmium ND 5 0.20 0.039 mg/Kg 09/19/18 09:20 09/19/18 21:27 Copper ND 0.50 0.11 mg/Kg 09/19/18 09:20 09/19/18 21:27 5 Lead ND 0.25 0.024 mg/Kg 09/19/18 09:20 09/19/18 21:27 5 Zinc ND 2.5 0.81 mg/Kg 09/19/18 09:20 09/19/18 21:27

Lab Sample ID: LCS 580-284311/11-A

Matrix: Solid

Analysis Batch: 284430

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 284311

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	200	200		mg/Kg		100	80 - 120	
Cadmium	5.00	5.04		mg/Kg		101	80 - 120	
Copper	25.0	25.6		mg/Kg		102	80 - 120	
Lead	50.0	49.3		mg/Kg		99	80 - 120	
Zinc	200	198		mg/Kg		99	80 - 120	

Lab Sample ID: LCSD 580-284311/12-A

Matrix: Solid

Analysis Batch: 284430

Client Sample	ID: Lab Control Sample Dup
	Prep Type: Total/NA

Prep Batch: 284311

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	200	206		mg/Kg		103	80 - 120	3	20
Cadmium	5.00	5.06		mg/Kg		101	80 - 120	0	20
Copper	25.0	26.3		mg/Kg		105	80 - 120	3	20
Lead	50.0	49.6		mg/Kg		99	80 - 120	0	20
Zinc	200	204		mg/Kg		102	80 - 120	3	20

Lab Sample ID: 580-79669-3 MS

Matrix: Solid

Client Sample ID: PDI-SG-B438
Prep Type: Total/NA
Pron Ratch: 28/311

Analysis Batch: 284430										atch: 284311
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	4.4		311	326		mg/Kg	₩	103	80 - 120	
Cadmium	0.15	J	7.78	8.24		mg/Kg	₩	104	80 - 120	

TestAmerica Seattle

10/12/2018

Page 21 of 32

Client Sample ID: PDI-SG-B438

Prep Type: Total/NA

Project/Site: Portland Harbor Pre-Remedial Design

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 580-79669-3 MS	
Matrix: Solid	

120

120

Analysis Batch: 284430									Prep Batch: 284311
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Copper	31	F1	38.9	82.2	F1	mg/Kg	₩	133	80 - 120
Lead	14		77.8	97.4		mg/Kg	₽	108	80 - 120
Zinc	120		311	478		mg/Kg	≎	114	80 - 120

Lab Sample ID: 580-79669-3 MSD Client Sample ID: PDI-SG-B438 Prep Type: Total/NA

Matrix: Solid

Client: AECOM

Analysis Batch: 284430									Prep Ba	itch: 28	34311
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	4.4		311	331		mg/Kg	<u> </u>	105	80 - 120	2	20
Cadmium	0.15	J	7.77	8.11		mg/Kg	₩	103	80 - 120	2	20
Copper	31	F1	38.8	77.7	F1	mg/Kg	₩	121	80 - 120	6	20
Lead	14		77.7	98.0		mg/Kg	₩	109	80 - 120	1	20

311

468

120

Lab Sample ID: 580-79669-3 DU

Matrix: Solid

Zinc

Analyte Arsenic Cadmium Copper Lead

Zinc

Analysis Batch: 284430

						Prep Typ		
Sample	Sample	DU	DU			•		RPD
Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
4.4		4.23		mg/Kg	- -		5	20
0.15	J	0.154	J	mg/Kg	₽		5	20
31	F1	30.1		mg/Kg	₽		2	20
14		15.2		mg/Kg			11	20

mg/Kg

mg/Kg

111

80 - 120

Client Sample ID: PDI-SG-B438

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

86

80 - 120

20

20

2

Prep Type: Total/NA

Prep Batch: 283789

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 580-283789/22-A

Matrix: Solid

Analysis Batch: 283864

MB MB

Analyte	Result Qualifier	RL	MDL	Unit	I	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.030	0.0090	mg/Kg		_	09/12/18 12:34	09/12/18 15:01	1

Lab Sample ID: LCS 580-283789/23-A

Matrix: Solid

Analyte Mercury

Mercury

Analysis Batch: 283864

						Prep Type: Total/NA
						Prep Batch: 283789
Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
 0.167	0.155		mg/Kg		93	80 - 120

mg/Kg

Lab Sample ID: LCSD 580-283789/24-A **Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA** Analysis Batch: 283864 Prep Batch: 283789 Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier **Analyte** Unit D %Rec Limits RPD Limit

0.144

0.167

TestAmerica Seattle

10/12/2018

Client Sample ID: PDI-SG-B438

Client Sample ID: PDI-SG-B438

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 283789

Prep Type: Total/NA

Project/Site: Portland Harbor Pre-Remedial Design

Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: 580-79669-3 MS

Matrix: Solid

Analyte

Mercury

Client: AECOM

Analysis Batch: 283864

Prep Type: Total/NA **Prep Batch: 283789** Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits 0.257 121 80 - 120 0.10 F1 0.416 F1 mg/Kg

Lab Sample ID: 580-79669-3 MSD Client Sample ID: PDI-SG-B438 **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 283864 Prep Batch: 283789** Sample Sample Spike MSD MSD **RPD** %Rec. RPD Result Qualifier Added Limits Analyte Result Qualifier Limit Unit D %Rec ☼ 0.257 80 - 120 Mercury 0.10 F1 0.382 mg/Kg 108 20

Lab Sample ID: 580-79669-3 DU

Matrix: Solid

Analysis Batch: 283864

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier D RPD Limit Analyte Unit ₹ Mercury 0.10 F1 0.101 mg/Kg 20

Method: 9060_PSEP - TOC (Puget Sound)

Lab Sample ID: MB 580-284391/5

Matrix: Solid

Analysis Batch: 284391

MR MR

Result Qualifier RL **MDL** Unit Prepared Analyzed Total Organic Carbon - Duplicates 119 J 2000 44 mg/Kg 09/19/18 12:31

Lab Sample ID: LCS 580-284391/6

Matrix: Solid

Analysis Batch: 284391

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Analyte D 4310 4270 Total Organic Carbon -101 68 - 149 mg/Kg **Duplicates**

Lab Sample ID: LCSD 580-284391/7 **Matrix: Solid**

Analysis Batch: 284391

Spike LCSD LCSD RPD %Rec Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit 4270 3680 mg/Kg 86 68 - 149 16 Total Organic Carbon -

Duplicates

Lab Sample ID: 580-79669-3 MS

Matrix: Solid

Analysis Batch: 284391

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits Analyte 18000 B 120000 107000 75 68 - 149 Total Organic Carbon mg/Kg

Duplicates

TestAmerica Seattle

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: PDI-SG-B438

Client Sample ID: PDI-SG-B438

Prep Type: Total/NA

Project/Site: Portland Harbor Pre-Remedial Design

Method: 9060_PSEP - TOC (Puget Sound) (Continued)

Matrix: Solid

Client: AECOM

Analysis Batch: 284391

Lab Sample ID: 580-79669-3 MSD

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon -	18000	В	120000	131000		mg/Kg		95	68 - 149	20	32

Duplicates

Lab Sample ID: 580-79669-3 DU Client Sample ID: PDI-SG-B438 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 284391

,, c.c = = c								
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Organic Carbon -	18000	В	18400		mg/Kg		 3	50
Duplicates								

Lab Sample ID: 580-79669-3 TRL Client Sample ID: PDI-SG-B438 Matrix: Solid Prep Type: Total/NA

Analysis Batch: 284391

7 maryolo Batom 201001								
-	Sample	Sample	TRL	TRL				RSD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RSD	Limit
Total Organic Carbon -	18000	В	19100		mg/Kg		 3	20
Duplicates								

Method: D 2216 - Percent Moisture

Client Sample ID: PDI-SG-B438 Lab Sample ID: 580-79669-3 DU Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 283991

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Solids	56.4		 56.0		%			0.7	20

Method: Moisture 70C - Percent Moisture, 70 C

Lab Sample ID: 580-79669-2 DU Client Sample ID: PDI-SG-B437-D

Matrix: Solid

Analysis Batch: 284559										
-	Sample	Sample		DU	DU					RPD
Analyte	Result	Qualifier	Res	ult	Qualifier	Unit	D		RPD	Limit
Total Solids @ 70°C	60	H	·	61		%			0.4	20

TestAmerica Seattle

10/12/2018

Prep Type: Total/NA

Client: AECOM

Project/Site: Portland Harbor Pre-Remedial Design

Client Sample ID: PDI-SG-B437

Date Collected: 08/16/18 12:45 Date Received: 08/17/18 15:30

Lab Sample ID: 580-79669-1

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060_PSEP			284391	09/19/18 14:16	TTN	TAL SEA
Total/NA	Analysis	D 2216		1	283991	09/14/18 12:42	KMS	TAL SEA
Total/NA	Analysis	Moisture 70C		1	283855	09/13/18 04:11	HJM	TAL SEA

Client Sample ID: PDI-SG-B437

Date Collected: 08/16/18 12:45

Date Received: 08/17/18 15:30

Lab Sample ID: 580-79669-1

Percent Solids: 54.3

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			284043	09/15/18 08:47	DB	TAL SEA
Total/NA	Analysis	8270D		25	284395	09/20/18 01:11	ERZ	TAL SEA
Total/NA	Prep	3546			284042	09/15/18 08:40	BAH	TAL SEA
Total/NA	Analysis	8270D SIM		25	284269	09/19/18 00:41	W1T	TAL SEA
Total/NA	Prep	Organotin Prep			284918	09/26/18 09:35	APR	TAL SEA
Total/NA	Analysis	Organotins		1	285981	10/09/18 22:17	ERZ	TAL SEA
Total/NA	Prep	3546			284044	09/15/18 08:55	BAH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	284139	09/18/18 00:49	CJ	TAL SEA
Total/NA	Prep	3050B			284311	09/19/18 09:20	T1H	TAL SEA
Total/NA	Analysis	6020B		5	284430	09/19/18 22:13	FCW	TAL SEA
Total/NA	Prep	7471A			283789	09/12/18 12:34	T1H	TAL SEA
Total/NA	Analysis	7471A		1	283864	09/12/18 15:22	FCW	TAL SEA

Client Sample ID: PDI-SG-B437-D

Date Collected: 08/16/18 12:45

Date Received: 08/17/18 15:30

Lab Sample ID: 580-79669-2 Matrix: Solid

Batch Dilution Batch **Prepared Prep Type** Method Number or Analyzed Analyst Туре Run **Factor** Lab Total/NA 09/19/18 14:21 TTN TAL SEA Analysis 9060_PSEP 284391 Total/NA Analysis D 2216 283991 09/14/18 12:42 KMS TAL SEA 1 Total/NA Analysis Moisture 70C 1 284559 09/21/18 10:42 A1K TAL SEA

Client Sample ID: PDI-SG-B437-D

Date Collected: 08/16/18 12:45

Date Received: 08/17/18 15:30

Lab Sample ID: 580-79669-2 **Matrix: Solid** Percent Solids: 51.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			284043	09/15/18 08:47	DB	TAL SEA
Total/NA	Analysis	8270D		25	284395	09/20/18 01:35	ERZ	TAL SEA
Total/NA	Prep	3546			284042	09/15/18 08:40	BAH	TAL SEA
Total/NA	Analysis	8270D SIM		25	284269	09/19/18 01:07	W1T	TAL SEA
Total/NA	Prep	Organotin Prep			284918	09/26/18 09:35	APR	TAL SEA
Total/NA	Analysis	Organotins		1	285981	10/10/18 01:16	ERZ	TAL SEA

Client Sample ID: PDI-SG-B437-D

Date Collected: 08/16/18 12:45 Date Received: 08/17/18 15:30

Lab Sample ID: 580-79669-2 **Matrix: Solid**

Percent Solids: 51.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			284044	09/15/18 08:55	BAH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	284139	09/18/18 01:10	CJ	TAL SEA
Total/NA	Prep	3050B			284311	09/19/18 09:20	T1H	TAL SEA
Total/NA	Analysis	6020B		5	284430	09/19/18 22:17	FCW	TAL SEA
Total/NA	Prep	7471A			283789	09/12/18 12:34	T1H	TAL SEA
Total/NA	Analysis	7471A		1	283864	09/12/18 15:25	FCW	TAL SEA

Client Sample ID: PDI-SG-B438

Date Collected: 08/16/18 14:34

Lab Sample ID: 580-79669-3 **Matrix: Solid**

Date Received: 08/17/18 15:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060_PSEP			284391	09/19/18 12:39	TTN	TAL SEA
Total/NA	Analysis	D 2216		1	283991	09/14/18 12:42	KMS	TAL SEA
Total/NA	Analysis	Moisture 70C		1	283855	09/13/18 04:11	HJM	TAL SEA

Client Sample ID: PDI-SG-B438

Lab Sample ID: 580-79669-3 Date Collected: 08/16/18 14:34 **Matrix: Solid** Date Received: 08/17/18 15:30 Percent Solids: 56.4

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			284057	09/15/18 14:52	DB	TAL SEA
Total/NA	Analysis	8270D		10	284800	09/24/18 21:58	ADB	TAL SEA
Total/NA	Prep	3546			284059	09/15/18 16:23	DB	TAL SEA
Total/NA	Analysis	8270D SIM		10	284415	09/19/18 14:31	CJ	TAL SEA
Total/NA	Prep	Organotin Prep			284918	09/26/18 09:35	APR	TAL SEA
Total/NA	Analysis	Organotins		1	285981	10/09/18 22:43	ERZ	TAL SEA
Total/NA	Prep	3546			284058	09/15/18 16:58	DB	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	284335	09/20/18 00:52	JCM	TAL SEA
Total/NA	Prep	3050B			284311	09/19/18 09:20	T1H	TAL SEA
Total/NA	Analysis	6020B		5	284430	09/19/18 21:42	FCW	TAL SEA
Total/NA	Prep	7471A			283789	09/12/18 12:34	T1H	TAL SEA
Total/NA	Analysis	7471A		1	283864	09/12/18 15:08	FCW	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: AECOM TestAmerica Job ID: 580-79669-1

Project/Site: Portland Harbor Pre-Remedial Design

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	01-19-19
ANAB	DoD ELAP		L2236	01-19-19
ANAB	ISO/IEC 17025		L2236	01-19-19
California	State Program	9	2901	11-05-18
Montana (UST)	State Program	8	N/A	04-30-20
Nevada	State Program	9	WA000502019-1	07-31-19
Oregon	NELAP	10	WA100007	11-05-18
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-19

3

4

5

7

8

9

10

Sample Summary

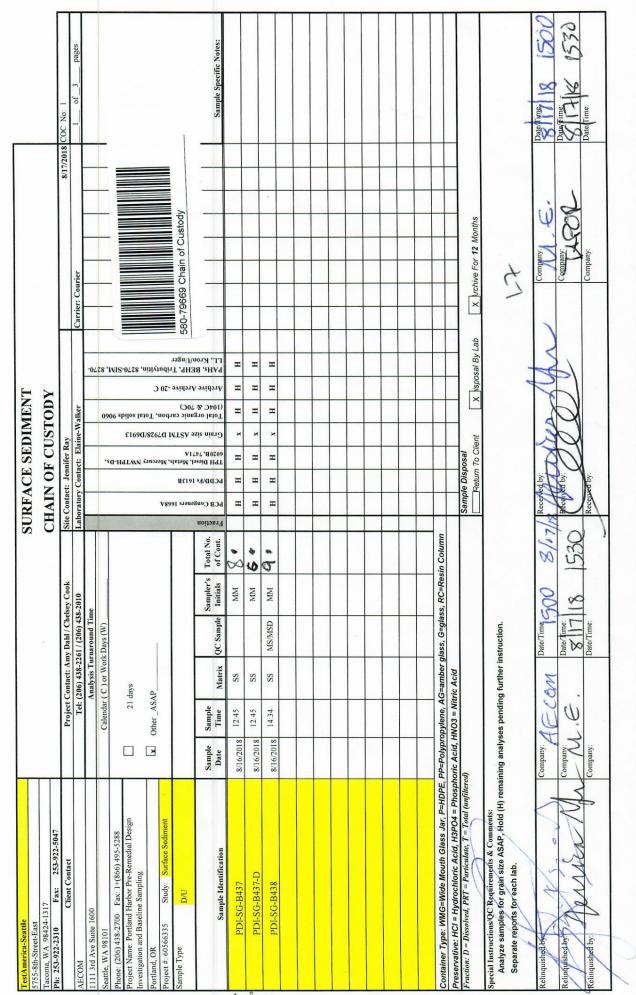
Client: AECOM

Project/Site: Portland Harbor Pre-Remedial Design

TestAmerica Job ID: 580-79669-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
580-79669-1	PDI-SG-B437	Solid	08/16/18 12:45 08/17/18 15:30
580-79669-2	PDI-SG-B437-D	Solid	08/16/18 12:45 08/17/18 15:30
580-79669-3	PDI-SG-B438	Solid	08/16/18 14:34 08/17/18 15:30

2


Λ

4

6

0

9

Page 29 of 32

10/12/2018

	terlieben Statistische Gerinate Gerinate des einstelle bei der Kenten der Statistische Gerinate der Gerinate
	- K
	I I
	10
	8
	Š
	3
	8
	- 1
	8
	1
	å
	- 4
i	-
	8
	1
- 1	- 8
ı	8
	9450
	Ş.
- 1	- Park
- 1	-
	9
	aw) es
1	2010
1	1
	SAM.
1	100
	8
	966
	A.
<u> </u>	2444
	Amir.
í	9
	1
	[1]
	ш
- 1	ě
	1404
- 1	8
	Alfa-
1	100
	Ę
	1
	É
	ALLAN
	reactions of the state of the s

	-																								
TestAmerica-Seattle 5755-8th-Street-East	-						SU	RF/	ACE	SE	DI	MEN	T										İ		
Tacoma WA 98424-1317	1																						i		
Ph: 253-922-2310 Fax: 253-922-5047	1						CH	AI	N O	FC	US]	rod	Y										ı		
Client Contact	Project Contact: Amy Dahl / Chelsey Cook Site C								te Contact: Jennifer Ray 8/17/2018										COC No. 1	·····					
AECOM																Carrier: Courier						lof	3	ages	
1111 3rd Ave Suite 1600			Analysis Tu	rnaround Ti	me						T		T	d			T	T	T	T					
Seattle, WA 98101		Calendar	(C) or Wo	rk Days (W)		***************************************	1 1							827					ļ				ı		
Phone: (206) 438-2700 Fax: 1+(866) 495-5288										4) §		Ä,	1	ł	ł	1	i	1	 	: '			
Project Name: Portland Harbor Pre-Remedial Design Investigation and Baseline Sampling		21	days							NWTPI	6913	of solid		8270-8											
Portland, OR	x	Other AS	AP							i i	28/1	Ę.		糞											
Project #: 60566335 Study: Surface Sediment	1	-						¥		ž	070	ű,	-20 C	ff											
Sample Type: D/U				·· · · · · · · · · · · · · · · · · · ·				ners 1668A	6138	Metals.	ASTM	nic cart	rchive -	HP, Tri Unger	580-	79669	Chair	n of C	ustod	y Y			_		
Sample Identification	Sample Date	Sample Time	Matrix	QC Sample	Sampler's Initials	Total No.	raction	PCB Congeners	PCDD/Fs 1613B	FPH Diesel, Metala, Mercury, NW TPH-Dx, 6028B, 7471A	Grain size ASFM D7928/D6913	Fotal organic varbon, Total solids 9868 184C & 70C)	Archive Archive	PAHS, BEHP, Tributyttin, 8270-SIM, 8270- LL, Kron/Unger	1		1	ļ	l						
		12:45	SS	QC Saurpic	MM	80] <u>#</u> [-	***********	 	_	+	-		 	 			Sample	Specific !	otes:
PDI-SG-B437 PDI-SG-B437-D	8/16/2018	12:45	SS	 	MM	5 *	\vdash	H	Н	H	X	В	H	Н		+	╁	 		-					
	8/16/2018	14:34	SS	MS/MSD	MM	9,	\vdash	H	11	Н	x	H	Н	Н			╁	├	 	ļ					
PDI-SG-B438	8/16/2018	11.21	0.07	313.113.2	141.41	1 1	H	Н	Н	H	х	Н	Н	H	-		 		 				***************************************		***************************************
		 				 	\vdash								-		 	 							
				 			\vdash						<u> </u>				 		 	ļ					
							╢																		
							╁┼								+	+	 								
ENDAS NA ARTE PER A MANAGER (ENDA)							\vdash								_	-									······································
						 	\vdash																		
<u> </u>							\Box																		
	***************************************										***********					1									
Container Type: WMG=Wide Mouth Glass Jar, P=HDPE,	PP=Polypri	opviene. A	G=amber o	ilass. G≃gla:	ss. RC=Re	sin Column	_								_	+	ļi	-						····	·········
Preservative: HCl = Hydrochloric Acid, H3PO4 = Phosph	······································	****		,, <u> </u>																					
Fraction: D = Dissolved, PRT = Particulate, T = Total (unfiltere					·····		5	Sampl	e Disp	osai											<u>-</u>				
							ĺ		Return	To Clie	∍nt		ispo	sal By La) [X rcl	ive For	12 M	onths						
Special Instructions/QC Requirements & Comments: Analyze samples for grain size ASAP, Hold (H) remai	ning analys	ses pendin	a further ir	struction.																					
Separate reports for each lab.		•	-													\	7								
f Manual Control													A	1									1		
Relinquished	Company /	1EC	en	Date/Time	500	8/17	//s	Receive	d by	$T\chi$	101	1	$\mathcal{A}_{\mathcal{A}}$	4~	ALLEGO AND THE STREET		Compa	iny:	-	3		ŗ	学作71	Q i	500
Relinquished by A A A A A	Company M	,e		Date/Time:	18	1530	(ecoly)	б Бу			0					Compa		 77	2		I.	7174	\ \1	530
Relinquished by	Сопред	DOM	_	Bil 7	118	1800	R	eceme	d by:	5	~~	2		<i>l</i> -			Compa	2	A	7	 子	 	late Time:	- ' የ አ	950
													······································										- 0 ′		

IR5=1.6/1.6 W/C-5.

IRE= 1.6/1.6 00/03

9530 8450 pages Sample Specific Notes: Date Finns COC No: 8/17/2018 Company of the 580-79669 Chain of Custody X vchive For 12 Months 7 Carrier: Courier X isposal By Lab ևև, Kron/Սոցеւ H H Ε PAHs, BEHP, Tribucyltin, 8270-SIM, 8270-Ξ Archive Archive -20 C CHAIN OF CUSTODY SURFACE SEDIMENT Site Contact: Jennifer Ray Laboratory Contact: Elaine-Walker H Grain size ASTM D7928/D6913 Return To Client TPH Diesel, Metals, Mercury NWTPH-Dx, 60209, 7471A Ħ Ħ Sample Disposa iyed by: H H Ħ PCB Congeners 1668A 8/17 1530 Container Type: WMG=Wide Mouth Glass Jar, P=HDPE, PP=Polypropylene, AG=amber glass, G=glass, RC=Resin Column Total No. of Cont. 9 3 Sampler's Initials Project Contact: Amy Dabl / Chelsey Cook Tel: (206) 438-2261 / (206) 438-2010 MM MM MM Date/Time 500 /Ime: | 8 Analysis Turnaround Time QC Sample MS/MSD Calendar (C) or Work Days (W) special Instructions/QC Requirements & Comments:
Analyze samples for grain size ASAP, Hold (H) remaining analyses pending further instruction. 04 M Matrix Preservative: HCl = Hydrochloric Acld, H3PO4 = Phosphoric Acid, HNO3 = Nitric Acid Fraction: D = Dissolved, PRT = Particulate, T = Total (unfiltered) SS SS SS 200 21 days ASAP Sample Time 12:45 12:45 14:34 Other 8/16/2018 8/16/2018 8/16/2018 Sample Date company: roject Name: Portland Harbor Pre-Remedial Design Study: Surface Sediment. Fax: 253-922-5047 hone: (206) 438-2700 Fax: 1+(866) 495-5288 Sample Identification Client Contact Separate reports for each lab. rvestigation and Baseline Sampling PDI-SG-B437-D PDI-SG-B438 PDI-SG-B437 Tacoma, WA 98424-1317 Ph: 253-922-2310 111 3rd Ave Suite 1600 755-8th-Street-East Project #: 60566335 seattle, WA 98101 ortland, OR ample Type: **AECOM** Page 31 of 32 10/12/2018 Client: AECOM Job Number: 580-79669-1

Login Number: 79669 List Source: TestAmerica Seattle

List Number: 1

Creator: O'Connell, Jason I

Creator. O Connell, Jason I		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	